AQA GCSE Physics - Equations \& Formulae (specification 8463 \& 8464)

Unit 1: Energy

Equations to Learn	
kinetic energy $=\frac{1}{2} \times$ mass \times speed ${ }^{2}$	$E_{K}=\frac{1}{2} m^{2}$
GPE $=$ mass \times gravitational field strength \times height	$E_{P}=m g h$
power $=\frac{\text { work done }}{\text { time taken }}=\frac{\text { energy transferred }}{\text { time taken }}$	$P=\frac{W}{t}=\frac{E}{t}$
efficiency $=\frac{\text { useful energy output }}{\text { total energy input }}$ efficiency $=\frac{\text { useful power output }}{\text { total power input }}$	
Equations given in the exam	

Unit 2: Electricity

Equations to Learn	
charge flow $=$ current \times time	$Q=I t$
potential difference $=$ current \times resistance	$V=I R$
total resistance $=$ resistance of component $1+$ resistance of component 2	$\begin{aligned} & R_{T} \\ & =R_{1}+R_{2} \end{aligned}$
power $=$ current \times potential difference	$P=I V$
power $=(\text { current })^{2} \times$ resistance	$P=I^{2} R$
energy transferred $=$ power \times time	$E=P t$
energy transferred $=$ charge flow \times potential difference	$E=Q V$

* Higher tier only
^ Separate Physics only

Unit 3: Particle Model of Matter

| Equations to Learn |
| :--- | :--- |
| density $=\frac{\text { mass }}{\text { volume }}$ |$\quad \rho=\frac{m}{V}$

Unit 6: Waves

Equations to Learn	
wave speed $=$ frequency \times wavelength	$v=f \lambda$
Equations given in the exam	
time period $=\frac{1}{\text { frequency }}$	$T=\frac{1}{f}$
^ magnification $=\frac{\text { image height }}{\text { object height }}$	$M=\frac{h_{\text {image }}}{h_{\text {object }}}$

Unit 7: Magnetism and Electromagnetism

Equations given in the exam	
* Force $=$ magnetic flux density \times current \times length of conductor in magnetic field	$F=B I l$
$\begin{aligned} & * \frac{\text { potential difference across primary coil }}{\text { potential difference across secondary coil }}= \\ & \frac{\text { number of turns in primary coil }}{\text { number of turns in secondary coil }} \end{aligned}$	$\frac{V_{P}}{V_{S}}=\frac{N_{P}}{N_{S}}$
* \wedge p.d across primary \times current in primary $=$ p.d. across secondary x current in secondary	$V_{P} I_{P}=V_{S} I_{S}$

Unit 5: Forces

Equations to Learn	
weight $=$ mass \times gravitational field strength	$W=m g$
work done $=$ force \times distance (moved along the line of action of the force)	$W=F s$
force $=$ spring constant \times extension	$F=k e$
moment of a force $=$ force \times distance (perpendicular to the direction of the force)	$M=F d$
$\text { pressure }=\frac{\text { force normal to a surface }}{\text { area of that surface }}$	$p=\frac{F}{A}$
distance travelled $=$ speed \times time	$s=v t$
$\begin{aligned} \text { acceleration } & =\frac{\text { change in velocity }}{\text { time taken }} \\ & =\frac{\text { final velocity-initial velocity }}{\text { time taken }} \end{aligned}$	$\begin{aligned} a & =\frac{\Delta v}{t} \\ & =\frac{v-u}{t} \end{aligned}$
resultant force $=$ mass \times acceleration	$F=m a$
* momentum $=$ mass \times velocity	$p=m v$
Equations given in the exam	
* \wedge Pressure $=$ height of column \times density of liquid \times gravitational field strength	$p=h \rho g$
$\begin{aligned} & \wedge(\text { final velocity })^{2}-(\text { (initial velocity })^{2}= \\ & \\ & 2 \times \text { acceleration } \times \text { distance } \end{aligned}$	$\begin{aligned} & v^{2}-u^{2} \\ & =2 a s \end{aligned}$
$* \wedge \text { Force }=\frac{\text { change in momentum }}{\text { time taken }}$	$F=\frac{m \Delta v}{t}$

Unit 4: Atomic Structure \& Unit 8: Space

There are no equations in these sections of the course

